Robotic hands with soft surfaces can perform stable grasping, but the high friction of the soft surfaces makes it difficult to release objects, or to perform operations that require sliding. To solve this issue, we previously developed a contact area variable surface (CAVS), whose friction changed according to the load. However, only our fundamental results were previously presented, with detailed analyses not provided. In this study, we first investigated the CAVS friction anisotropy, and demonstrated that the longitudinal direction exhibited a larger ratio of friction change. Next, we proposed a sensible CAVS, capable of providing a variable-friction mechanism, and tested its sensing and control systems in operations requiring switching between sliding and stable-grasping modes. Friction sensing was performed using an embedded camera, and we developed a gripper using the sensible CAVS, considering the CAVS friction anisotropy. In CAVS, the low-friction mode corresponds to a small grasping force, while the high-friction mode corresponds to a greater grasping force. Therefore, by controlling only the friction mode, the gripper mode can be set to either the sliding or stable-grasping mode. Based on this feature, a methodology for controlling the contact mode was constructed. We demonstrated a manipulation involving sliding and stable grasping, and thus verified the efficacy of the developed sensible CAVS.
translated by 谷歌翻译
在决策过程中使用机器学习技术时,模型的解释性很重要。Shapley添加说明(SHAP)是机器学习模型最有前途的解释方法之一。当一个变量的效果取决于另一个变量的值时,就会发生交互作用。即使每个变量对结果几乎没有影响,其组合也会对结果产生大量影响。了解互动对于理解机器学习模型很重要。但是,天真的外形分析无法区分主要效果和相互作用效果。在本文中,我们将Shapley-Taylor索引作为一种解释方法,用于使用Shap考虑相互作用效果的机器学习模型。我们将该方法应用于京都大学医院的癌症队列数据(n = 29,080),以分析哪种因素组合有助于结肠癌的风险。
translated by 谷歌翻译
布料的机器人操作的应用包括织物制造业到处理毯子和洗衣。布料操作对于机器人而言是挑战,这主要是由于它们的高度自由度,复杂的动力学和折叠或皱巴巴配置时的严重自我闭合。机器人操作的先前工作主要依赖于视觉传感器,这可能会对细粒度的操纵任务构成挑战,例如从一堆布上抓住所需数量的布料层。在本文中,我们建议将触觉传感用于布操作;我们将触觉传感器(Resin)连接到弗兰卡机器人的两个指尖之一,并训练分类器,以确定机器人是否正在抓住特定数量的布料层。在测试时间实验中,机器人使用此分类器作为其政策的一部分,使用触觉反馈来掌握一两个布层,以确定合适的握把。实验结果超过180次物理试验表明,与使用图像分类器的方法相比,所提出的方法优于不使用触觉反馈并具有更好地看不见布的基准。代码,数据和视频可在https://sites.google.com/view/reskin-cloth上找到。
translated by 谷歌翻译
我们正在使用使用Kinect V2传感器收集的美国手语(ASL)的数据集,该数据集包含包含Fluent和非浮力签名者的视频。该数据集是作为一个项目的一部分收集的,该项目旨在开发和评估计算机视觉算法,以支持新技术以自动检测ASL流利度属性。总共要求45名流利和非全体参与者执行与介绍性或中级ASL课程中使用的作业相似的签名作业作业。注释数据以确定签名的几个方面,包括语法特征和非手动标记。手语识别目前非常数据驱动,该数据集可以支持识别技术的设计,尤其是可以使ASL学习者受益的技术。对于想要对比流利和非流利签名的ASL教育研究人员来说,该数据集也可能很有趣。
translated by 谷歌翻译
最近的工作表明,2臂“ Fling”运动对于服装平滑可能是有效的。我们考虑单臂弹性运动。与几乎不需要机器人轨迹参数调整的2臂fling运动不同,单臂fling运动对轨迹参数很敏感。我们考虑一个单一的6多机器人臂,该机器人臂学习跨越轨迹以实现高衣覆盖率。给定服装抓握点,机器人在物理实验中探索了不同的参数化fling轨迹。为了提高学习效率,我们提出了一种粗到精细的学习方法,该方法首先使用多军匪徒(MAB)框架有效地找到候选动作,然后通过连续优化方法来完善。此外,我们提出了基于Fling Fall结果不确定性的新颖培训和执行时间停止标准。与基线相比,我们表明所提出的方法显着加速学习。此外,由于通过自学人员收集的类似服装的先前经验,新服装的MAB学习时间最多减少了87%。我们评估了6种服装类型:毛巾,T恤,长袖衬衫,礼服,汗衫和牛仔裤。结果表明,使用先前的经验,机器人需要30分钟以下的时间才能为达到60-94%覆盖率的新型服装学习一项动作。
translated by 谷歌翻译
使用单个参数化动态动作操纵可变形物体对蝇钓,宽毯和播放洗牌板等任务非常有用。此类任务作为输入所需的最终状态并输出一个参数化的开环动态机器人动作,它向最终状态产生轨迹。这对于具有涉及摩擦力的复杂动态的长地平轨迹尤其具有挑战性。本文探讨了平面机器人铸造的任务(PRC):其中握住电缆一端的机器人手腕的一个平面运动使另一端朝向所需的目标滑过平面。 PRC允许电缆达到机器人工作区以外的点,并在家庭,仓库和工厂中具有电缆管理的应用。为了有效地学习给定电缆的PRC策略,我们提出了Real2Sim2Real,一个自动收集物理轨迹示例的自我监督框架,以使用差分演进调谐动态模拟器的参数,生成许多模拟示例,然后使用加权学习策略模拟和物理数据的组合。我们使用三种模拟器,ISAAC健身房分段,ISAAC健身房 - 混合动力和Pybullet,两个功能近似器,高斯工艺和神经网络(NNS),以及具有不同刚度,扭转和摩擦的三个电缆。结果每条电缆的16个举出的测试目标表明,使用ISAAC健身房分段的NN PRC策略达到中位误差距离(电缆长度的百分比),范围为8%至14%,表现优于真实或仅培训的基线和政策。只有模拟的例子。 https://tinyurl.com/robotcast可以使用代码,数据和视频。
translated by 谷歌翻译